The point of origin of your journey

along the line is the number 0. All other
numbers are measured by how close or
far they are from 0. Just a step away,
the number I sets the direction and scale
of measurement. Keep taking those
same steps to reach all the counting
numbers; or back up as well, and

you'll encounter all of the integers,

the mileposts of the Number Line.

The integers relate to one another in a
never-ending variety of patterns. The
interplay of those patterns gives each
number its own unique character and
story. Pick a number to visit. Which
patterns is it a part of? Now step back
and get the big perspective — can you
see the layout of an entire pattern?
Can you guess the next number in the
pattern beyond 100?

Between the integer mileposts of the
Number Line lies the vast countryside
of the Real Numbers. In this brief guide
we’ve highlighted just a handful of the
most interesting attractions. Many more
(indeed, infinitely more!) lie waiting to
be discovered.

Enjoy your tour!

PATTERNS AMONG THE
INTEGER MILEPOSTS

PRIMES Don’t miss the prime numbers! Since
arithmetic was invented, people have tried
@ to understand how multiplication connects
different integers. For example, 15 equals 3 = 5,
so0 3 and 5 are called “factors” of 15. You can divide most
numbers into factors in a similar way. But some numbers,
called the “primes,” cannot be broken down further.
Ancient Greek philosophers named the smallest bits of
matter “atoms,” which means “indivisible.” Primes are
the atoms of the number world — they are the indivisible
building blocks of all of the integers. As atoms comhine

to make molecules, so primes can be multiplied together
to form all the other integers.

SQUARES The square numbers are another must-see.
This fascinating family of numbers comes from
multiplying each integer by itself. Imagine, for
example, a square made up of five rows of five

dots each. That diagram would contain

5 x 5 = 25 dots altogether, so 25 shows upin  seeee
the pattern of square numbers. cecce

FIBONACCI SEQUENCE In an arithmetic
textbook in the year 1202, Leonardo of Pisa (also
known as Fibonacci) published an innocuous
word problem about raising rabbits and touched
off centuries of mathematical discovery. He asked

how many pairs of rabbits you would have after a year

if you started with one pair, and if every pair at least

two months old produced a new pair of rabbits each

month. Answering this problem leads to the sequence of

numbers shown here, in which each number is the sum
of the previous two. Although AR

the sequence doesn’t actually g

tell you much about real rabbits,

it does come up over and over
again in nature — for example,

the number of spirals of seeds in a sunflower is almost
always a Fibonacci number.

TRIANGULAR NUMBERS The story is told

about the great mathematician Gauss that in

1784 as a schoolboy, his class was assigned to

add up every number from | to 100. Much to the
teacher’s amazement, Gauss returned with the correct
answer — 5050 — in less than a minute! This sum can
he thought of as the number of dots in a triangular array,
and two triangles can go together to form a rectangle,
easily counted using multiplication. It seems that as a
schoolboy, Gauss discovered the formula n(n+l)/2 for
the nth triangular number. Can you see the pattern in
the triangular numbers
shown here?

PERFECT NUMBERS At |east since the times
of the Greek philosopher Pythagoras, visitors
to the number line have been comparing
numbers to their factors (see the Primes.) One
way to compare is to add up all of the smaller factors
of a number. For most numbers, like 2I, the sum you
get (1+3+7 = I1) will be less than the starting number.
For many other numbers, like I2, the sum (1+2+3+4+6
= 16) will be more than the original number. And for
just a handful of numbers, like 28, the sum comes out
exactly equal to the original number: 1+2+4+7+|4 = 28.
Given their rarity, Greek mathematicians called these
numbers “perfect.” Every even perfect number must be a
triangular number, so we've indicated them with a star
on their triangle. Nobody knows whether there are
any odd perfect numbers — maybe you can solve that
mystery someday!

FACTORIALS The factorials are the multiplication
version of the triangular numbers: instead
0 of adding up the first several numbers, you
multiply them all together. For example, the 5th

factorial number, written 5!, is | x 2 x 3 x 4 x 5, All that
multiplication makes the factorial numbers get big fast,
S0 you won’t see too many on this

portion of the Number Line. Factorials  a¢4/
come up all the time in calculating the
probabilities of things. For example,
the chance that you are dealt a spades
royal flush in poker is | in 52!/5!47!,

or lin 2,598,960.

POWERS OF TWO You'll definitely want to visit

wr the powers of two! They’re what you get when
- -q you multiply two by itself again and again, like
SV this: 2x2 %2 =2 x2=32, which can also be
written like this: 2° = 32. The powers of two get really
hig, really fast, because every time the exponent
increases by just one, the value doubles! The human
population has grown much like this, because each
generation multiplies the size of the previous one by
some factor. That’s what we mean when we say that
something is “growing exponentially.”

CUBES You've already visited the square numbers.

Now extend the idea of that pattern into three
ﬁ dimensions — it will work just as well. For

example, 27, which is the number of small blocks
ina 3= 3 x 3 cube like the Rubik’s cube helow, is one of
the cubic numbers. Another way of looking at this is that
a cube is anything you can get by multiplying an integer
by itself three times. Take a look at the
number line. Notice that cubes appear
on both sides of 0, but squares all

appear to the right of 0. Do you
know why?

HIGHLY COMPOSITE NUMBERS
x If primes are the atoms of the number world,
then highly composite numbers are at the
opposite end of the spectrum — the most complex



molecules among numbers. To qualify, a number must
have more factors than any smaller number has. You'll
recognize some familiar numbers in this category —

the number of inches in a foot, the number of seconds

in a minute, the number of degrees in a circle. These
numbers all show up because they’re easy to hreak down
into parts, so they’re helpful when you want to work with
fractions of a foot or slices of a circle.

PIZZA NUMBERS Now we come to a highly
practical and potentially tasty pattern. What’s the
maximum number of pieces you can slice a pizza
into with a specific number of straight-line cuts?

The pizza numbers are the answer! Note they start out

like the powers of two, but soon you get to a spot where

you can’t quite cut that many pieces. Next time you

have a pizza, see if you can cut it into |l pieces with just

four cuts.

CAKE NUMBERS (Cake numbers are just like

pizza numbers, only messier. Now you're
é cutting a cake in three dimensions: you can

cut horizontally, vertically, diagonally, or in any
other direction as long as you cut straight! As a result, once
you're using three cuts or more, the cake numbers are
always larger than the pizza numbers. So for example,
you can cut a cake into [5 pieces with only four cuts —
but some of those pieces would not have much frosting.

In fact, one would just be a chunk from the center of
the cake!

PENTAGONAL NUMBERS If there are triangular
and square numbers, why not pentagonal?

. In fact, for any regular arrangement of points,
you can create a number pattern

by counting how many points there

are in larger and larger versions of the
arrangement.

CONSTRUCTIBLE POLYGON NUMBERS
Ancient geometers favored two tools: the compass
and the straightedge. They created methods
using just these tools for drawing shapes such
as equilateral triangles, squares, and pentagons.

Millennia later, Gauss (see Triangular Numbers) found

away to draw a regular I7-sided shape, the first polygon

construction unknown in classical times. Gauss was so
proud of this discovery that he requested the figure he
placed on his tombstone. Now we know that only some
regular polygons are possible to construct, and this
number family tells which.

TETRAHEDRAL NUMBERS The tetrahedral
numbers extend the triangular numbers into
A three dimensions, just as the cubes do for the
squares. Look at the difference between each

pair of tetrahedral numbers — do you recognize the
values you find?

ATTRACTIONS FROM THE
COUNTRYSIDE OF REAL NUMBERS

V2 =1.41421356... Some numbers you find in the

1 ‘ﬁ 1 Real Number countryside are rational —

they can be expressed as a fraction with

integer numerator and denominator, and their decimal
expressions either terminate or enter a repeating
pattern. Others, like the square root of 2, are irrational
— not equal to any fraction, with decimal expressions
that go on forever without repeating. This number is one

of the first and simplest irrational numbers encountered:
the diagonal of a square with sides of length I.

(b= 1.6180339887... If you start with a rectangle
i | which is not a square, you can cut a square
L :  off one end, leaving a smaller rectangle
behind. If the rectangle left behind is a scaled-down copy
of the original, it is called a Golden Rectangle and the
ratio of the lengths of its sides is @, the Golden Ratio.

The number ¢ also shows up as the ratio of the diagonal
to the side of a regular pentagon. The Golden Ratio
shares deep connections with the Fibonacci sequence.
For example, the ratio of each successive Fibonacci
number to the previous one gets closer and closer to ¢.

e = 2.718281828459... Exponential growth

e (see Powers of Two) can start from any base,
but mathematicians use this one special

base called e more than any other. Why? The
exponential function e* has the unique property that its
rate of growth is given by the identical expression &".
This property simplifies calculations done with base e,
making it the natural choice for modeling exponential
growth in nature.

7T = 3.14159265... Draw a circle, any circle! Carefully
measure the circumference, and divide by the
@ diameter. The ratio you get is always the same,
no matter how large or small the circle, or
where you draw it. For practical and aesthetic reasons,
people have heen computing this irrational ratio to
ever-greater accuracy since ancient Egyptian times.

Modern computing techniques have allowed hillions of
digits to be determined.

OO and —OO What are the outer limits of the Number
Line? Where does it end? The true Number Line extends
forever in both directions, but alas, our tour must end
somewhere. The section shown here is merely a small
segment of the whole. So the space beyond the ends

is marked with oo and —oo, as reminders of the infinite
extent of the line that neither the roving monkey nor
humans can ever fully explore.

For answers to the questions in this tour guide and
more fun number facts and trivia, please visit us
online at mathmidway.org

Come visit a world of
Platonic perfection!

Like other exotic realms, the Number Line
has its own geography, its own special
attractions, and its own key sights to see.
Some of these highlights are steeped

in history, while others are more recent
discoveries. The Math Midway Number Line
will help you orient yourself in the world

of numbers.



